Driving the ECMO road to Lung protection

Ena Gupta MD, MPH
Assistant Professor, University of Vermont

No disclosures

Roadmap

What is Driving Pressure?

How to optimize Driving Pressure?

Mechanical ventilation in ECMO

Increased strain on the lung leads to Ventilator induced lung injury

Lung protective ventilation decreases stress on the lung

• Low tidal volume - to limit overdistention

• Low plateau pressure – limit barotrauma

• High PEEP - to prevent injury from low lung volume (atelectrauma)

Driving pressure is the distending pressure above PEEP to provide a tidal volume

$$\Delta P = V_T/C_{RS}$$

$$C_{RS}^{=} V_T / P_{plat} - PEEP$$

$$\Delta P = P_{plat} - PEEP$$

Time	Pplat (cm H ₂ O)	PEEP (cm H ₂ O)	Vt (mL)	DRIVING PRESSURE
ТО	28	5	450	23
T1	28	10	450	18

Driving pressure (ΔP) was a better predictor of mortality than Compliance or V_T

3,562 patients from 9 major previously reported ARDS trials

How to Optimize Driving pressure

Decrease VT

Optimize PEEP

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

How to s PEEP is incre

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

SI > 1, decreasing compliance- Overdistension
SI < 1 increasing compliance- alveolar
recruitment</pre>

- PEEP tables
- Compliance
- Pressure volume loops
- Driving pressure
- Stress Index
- Transpulmonary pressures
- Electrical impedence tomography

PEEP requires individualization

- Alveolar recruitability
- Pleural pressures
- Hemodynamics- can decrease cardiac output by
 - Increasing intrathoracic pressure \rightarrow Dec venous return
 - Increased RV afterload

Lung protective ventilation in ARDS

- Low tidal volume
- Low plateau pressure

High PEEP

Driving Pressure<15

Think of Extracorporeal life support (ECLS)

Refractory hypoxemia or hypercapnia with lung protective ventilation

ECMO is a supportive life saving therapy

• VV ECMO – for refractory hypoxemia or hypercapnia

VA ECMO – for both cardiac and respiratory support

The overall goal of mechanical ventilation under ECMO is to rest the lung by using ultra-protective ventilation

- Low (and even very low) tidal volume- Typically 4 mL/kg PBW and adjusted for the goal of plateau pressure (24 cmH2O)
- Low respiratory rate

What about PEEP and driving pressure in ECMO?

Don't Drive Blind: Driving Pressure to Optimize Ventilator Management in ECMO

Ena Gupta ^{1,2,∞}, Bharat Awsare ¹, Hitoshi Hiroshi ³, Nicholas Cavarocchi ³, Michael Baram ¹

192 patients including both VA and VV ECMO

<u>Higher DP 24 h</u> after ECMO was associated with an <u>increase in 30-day mortality</u> (OR 1.15, $p \le 0.001$)

Don't Drive Blind: Driving Pressure to Optimize Ventilator Management in ECMO

Ena Gupta ^{1,2,∞}, Bharat Awsare ¹, Hitoshi Hiroshi ³, Nicholas Cavarocchi ³, Michael Baram ¹

192 patients including both VA and VV ECMO

Higher DP 24 h after ECMO was associated with an increase in 30-day mortality (OR 1.15, $p \le 0.001$)

70 patients with **DP measured before and after ECMO**

70 patients with DP measured before and after ECMO

	DECREASE IN DP	INCREASE IN DP	
PEEP before cannulation	9.3 (± 4.3)	13.1 (± 5.4)	< 0.01
PEEP 24h after ECMO	6.8 (± 1.7)	7.0 (± 2.1)	0.63
Change in PEEP	-2.5 (± 3.4)	- 6 (± 4.8)	<0.01
Compliance before cannulation	n 31.5 (± 19.1)	29 (± 11.3)	0.58
Compliance 24 h after ECMO	32.2 (± 14.2)	22.6 (± 9)	< 0.01
Change in compliance	0.51 (± 10.5)	- 7.7 (± 10.8)	0.01

	DECRESAE IN DP	INCREASE IN DP	
Days on ECMO (days)	9 ± 5	13 ± 8	0.022
Length of stay after ECMO (days)	37 ± 37	30 ± 19	0.528
Died on ECMO	10 (30%)	10 (31%)	0.958
30-day mortality	11 (34%)	13 (42%)	0.537
Home	3 (9.4)	2 (6.4)	
Long-term acute care facility	3 (9.4)	2 (6.4)	
Rehabilitation facility	11 (34.4)	13 (42)	

CONCLUSION

- A significant proportion of the patients had an increase in driving pressure and decrease in compliance after initiation of ECMO despite ultraprotective ventilation.
- This may be due to inadequate recruitment while on ECMO.
- Those with increase in driving pressure had a longer length of stay on ECMO.
- Elevated driving pressure after ECMO initiation was associated with increased adjusted 30-day mortality among both VA- and VV-ECMO

Table 1. Overview of the recent studies investigating the impact of mechanical ventilator settings during ECMO on outcomes in patients with ARDS.

Studies	Study Design	Main Results	
Pham et al., 2013 [18] (n = 123)	Retrospective observational study	ICU mortality: 35.8% Higher plateau pressure on the first day under ECMO was independently associated with ICU mortality (OR 1.33, $p < 0.01$)	High Plateau P= Higher mortality
Schmidt et al., 2015 [20] (n = 168)	Retrospective study	ICU mortality: 29% Higher PEEP during the first 3 days of ECMO was independently associated with lower mortality (OR 0.75, p = 0.0006)	High PEEP = Lower mortality
Marhong et al., 2015 [16] (n = 2042)	Systematic review	Median (IQR) overall mortality: 41% (31–51%) Mortality was lower in patients receiving lower intensity of applied ventilation during ECMO. Combined tidal volume ≤ 4 mL/kg PBW and plateau pressure ≤ 26 cmH ₂ O during ECMO had lowest mortality	Combined TV<4 and PP<26 had lower mortality
Modrykamien et al., 2016 [19] (n = 64)	Retrospective observational study	Hospital mortality: 46.9% Increased plateau pressure was independently associated with decreased odds of hospital survival (OR 0.79 , $p = 0.007$)	High Plateau P = dec odds of survival
Neto et al., 2016 [21] (n = 545)	Individual patient data meta-analysis of observational studies	In-hospital mortality: 35.2% Driving pressure was the only ventilatory parameter during ECMO that was independently associated with in-hospital mortality (adjusted HR 1.06 , $p < 0.001$)	Driving pressure associated with mortality
Kim et al., 2019 [29] (n = 56)	Retrospective study	Hospital mortality: 48.1% Lung compliance during ECMO was significantly associated with 6-month mortality (HR 0.943, $p = 0.009$)	
Schmidt et al., 2019 [26] (n = 350)	International prospective cohort study	Six-month mortality: 39% MV settings during the first 2 days of ECMO did not impact the prognosis	MV settings did not impact mortality
Chiu et al., 2021 [17] (n = 152)	Retrospective study	Hospital mortality: 53.3% MP during the first 3 days of ECMO was the only ventilatory variable independently associated with 90-day hospital mortality, and MP referenced to compliance had the greatest predictive value for mortality compared to MP alone (adjusted HR 2.289 , $p = 0.010$)	Mechanical power associated with mortality

ECMO: extracorporeal membrane oxygenation; ARDS: acute respiratory distress syndrome; ICU: intensive care unit; OR: odds ratio; PEEP: positive end-expiratory pressure; IQR: interquartile range; PBW: predicted body weight; HR: hazard ratio; MV: mechanical ventilation; MP: mechanical power.

The overall goal of mechanical ventilation under ECMO is to rest the lung by using

- low (and even very low) tidal volume- Typically 4 mL/kg PBW and adjusted for the goal of plateau pressure (24 cmH2O)
- low respiratory rate
- Maintain sufficient PEEP

Table 2. Suggested Initial Mechanical Ventilation Targets during ECLS for Acute Respiratory Distress Syndrome

Parameter	Target	Notes	
Pplat <u>*</u>	≤24 cm H ₂ O; may choose to go lower if feasible		
Driving pressure <u>*</u>	≤14 cm H ₂ O		
VT	Adjust for goal Pplat	Typically ≤4 ml/kg PBW, often much lower	
Respiratory rate ^{<u>†</u>}	≤10 breaths/min	Typically only achieved when sedation, with or without NMBAs, is being used. Consider increased sweep flow to achieve, when appropriate	
PEEP <u>*</u>	≥10 cm H ₂ O	See text for circumstances that may warrant particularly high levels of PEEP	
F _{1O2} *	0.3-0.5	Higher F_{IO_2} may be necessary if ECLS is inadequate for achieving acceptable levels of oxygenation	

Mechanical ventilation matters in ECMO

SUMMARY

PEEP Is PERSONALIZED

Keep DRIVING PRESSURE low